Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.

Identifieur interne : 000960 ( Main/Exploration ); précédent : 000959; suivant : 000961

Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.

Auteurs : Scott W. Aesif [États-Unis] ; Ine Kuipers ; Jos Van Der Velden ; Jane E. Tully ; Amy S. Guala ; Vikas Anathy ; Juliana I. Sheely ; Niki L. Reynaert ; Emiel F M. Wouters ; Albert Van Der Vliet ; Yvonne M W. Janssen-Heininger

Source :

RBID : pubmed:21762778

Descripteurs français

English descriptors

Abstract

The transcription factor nuclear factor κB (NF-κB) is a critical regulator of inflammation and immunity and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyzes deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice that express a doxycycline-inducible constitutively active version of inhibitory κB kinase-β (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2-kb region of the Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of proinflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB and suggests a feed-forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.

DOI: 10.1016/j.freeradbiomed.2011.06.025
PubMed: 21762778
PubMed Central: PMC3181077


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuipers, Ine" sort="Kuipers, Ine" uniqKey="Kuipers I" first="Ine" last="Kuipers">Ine Kuipers</name>
</author>
<author>
<name sortKey="Van Der Velden, Jos" sort="Van Der Velden, Jos" uniqKey="Van Der Velden J" first="Jos" last="Van Der Velden">Jos Van Der Velden</name>
</author>
<author>
<name sortKey="Tully, Jane E" sort="Tully, Jane E" uniqKey="Tully J" first="Jane E" last="Tully">Jane E. Tully</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
<author>
<name sortKey="Sheely, Juliana I" sort="Sheely, Juliana I" uniqKey="Sheely J" first="Juliana I" last="Sheely">Juliana I. Sheely</name>
</author>
<author>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
</author>
<author>
<name sortKey="Wouters, Emiel F M" sort="Wouters, Emiel F M" uniqKey="Wouters E" first="Emiel F M" last="Wouters">Emiel F M. Wouters</name>
</author>
<author>
<name sortKey="Van Der Vliet, Albert" sort="Van Der Vliet, Albert" uniqKey="Van Der Vliet A" first="Albert" last="Van Der Vliet">Albert Van Der Vliet</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21762778</idno>
<idno type="pmid">21762778</idno>
<idno type="doi">10.1016/j.freeradbiomed.2011.06.025</idno>
<idno type="pmc">PMC3181077</idno>
<idno type="wicri:Area/Main/Corpus">000912</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000912</idno>
<idno type="wicri:Area/Main/Curation">000912</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000912</idno>
<idno type="wicri:Area/Main/Exploration">000912</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.</title>
<author>
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuipers, Ine" sort="Kuipers, Ine" uniqKey="Kuipers I" first="Ine" last="Kuipers">Ine Kuipers</name>
</author>
<author>
<name sortKey="Van Der Velden, Jos" sort="Van Der Velden, Jos" uniqKey="Van Der Velden J" first="Jos" last="Van Der Velden">Jos Van Der Velden</name>
</author>
<author>
<name sortKey="Tully, Jane E" sort="Tully, Jane E" uniqKey="Tully J" first="Jane E" last="Tully">Jane E. Tully</name>
</author>
<author>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
</author>
<author>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
</author>
<author>
<name sortKey="Sheely, Juliana I" sort="Sheely, Juliana I" uniqKey="Sheely J" first="Juliana I" last="Sheely">Juliana I. Sheely</name>
</author>
<author>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
</author>
<author>
<name sortKey="Wouters, Emiel F M" sort="Wouters, Emiel F M" uniqKey="Wouters E" first="Emiel F M" last="Wouters">Emiel F M. Wouters</name>
</author>
<author>
<name sortKey="Van Der Vliet, Albert" sort="Van Der Vliet, Albert" uniqKey="Van Der Vliet A" first="Albert" last="Van Der Vliet">Albert Van Der Vliet</name>
</author>
<author>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Epithelial Cells (immunology)</term>
<term>Epithelial Cells (metabolism)</term>
<term>Epithelial Cells (pathology)</term>
<term>Gene Expression Regulation (immunology)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (immunology)</term>
<term>Glutaredoxins (metabolism)</term>
<term>I-kappa B Kinase (genetics)</term>
<term>Immunization (MeSH)</term>
<term>Inflammation Mediators (metabolism)</term>
<term>Lipopolysaccharides (immunology)</term>
<term>Lipopolysaccharides (metabolism)</term>
<term>Lung (pathology)</term>
<term>Mice (MeSH)</term>
<term>Mice, Transgenic (MeSH)</term>
<term>NF-kappa B (genetics)</term>
<term>NF-kappa B (metabolism)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Transcription Factor RelA (metabolism)</term>
<term>Transcriptional Activation (genetics)</term>
<term>Transgenes (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation de la transcription (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Cellules épithéliales (anatomopathologie)</term>
<term>Cellules épithéliales (immunologie)</term>
<term>Cellules épithéliales (métabolisme)</term>
<term>Facteur de transcription NF-kappa B (génétique)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Facteur de transcription RelA (métabolisme)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (immunologie)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>I-kappa B Kinase (génétique)</term>
<term>Immunisation (MeSH)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Lipopolysaccharides (immunologie)</term>
<term>Lipopolysaccharides (métabolisme)</term>
<term>Médiateurs de l'inflammation (métabolisme)</term>
<term>Poumon (anatomopathologie)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Souris transgéniques (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>Transgènes (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>I-kappa B Kinase</term>
<term>NF-kappa B</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Promoter Regions, Genetic</term>
<term>Signal Transduction</term>
<term>Transcriptional Activation</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Activation de la transcription</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Glutarédoxines</term>
<term>I-kappa B Kinase</term>
<term>Régions promotrices (génétique)</term>
<term>Transduction du signal</term>
<term>Transgènes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Glutarédoxines</term>
<term>Lipopolysaccharides</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Gene Expression Regulation</term>
<term>Glutaredoxins</term>
<term>Lipopolysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Epithelial Cells</term>
<term>Glutaredoxins</term>
<term>Inflammation Mediators</term>
<term>Lipopolysaccharides</term>
<term>NF-kappa B</term>
<term>Transcription Factor RelA</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules épithéliales</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Facteur de transcription RelA</term>
<term>Glutarédoxines</term>
<term>Lipopolysaccharides</term>
<term>Médiateurs de l'inflammation</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Immunization</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Immunisation</term>
<term>Lignée cellulaire</term>
<term>Souris</term>
<term>Souris transgéniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transcription factor nuclear factor κB (NF-κB) is a critical regulator of inflammation and immunity and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyzes deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice that express a doxycycline-inducible constitutively active version of inhibitory κB kinase-β (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2-kb region of the Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of proinflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB and suggests a feed-forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21762778</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>51</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>1249-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2011.06.025</ELocationID>
<Abstract>
<AbstractText>The transcription factor nuclear factor κB (NF-κB) is a critical regulator of inflammation and immunity and is negatively regulated via S-glutathionylation. The inhibitory effect of S-glutathionylation is overcome by glutaredoxin-1 (Grx1), which under physiological conditions catalyzes deglutathionylation and enhances NF-κB activation. The mechanisms whereby expression of the Glrx1 gene is regulated remain unknown. Here we examined the role of NF-κB in regulating activation of Glrx1. Transgenic mice that express a doxycycline-inducible constitutively active version of inhibitory κB kinase-β (CA-IKKβ) demonstrate elevated expression of Grx1. Transient transfection of CA-IKKβ also resulted in significant induction of Grx1. A 2-kb region of the Glrx1 promoter that contains two putative NF-κB binding sites was activated by CA-IKKβ, RelA/p50, and lipopolysaccharide (LPS). Chromatin immunoprecipitation experiments confirmed binding of RelA to the promoter of Glrx1 in response to LPS. Stimulation of C10 lung epithelial cells with LPS caused transient increases in Grx1 mRNA expression and time-dependent increases in S-glutathionylation of IKKβ. Overexpression of Grx1 decreased S-glutathionylation of IKKβ, prolonged NF-κB activation, and increased levels of proinflammatory mediators. Collectively, this study demonstrates that the Glrx1 gene is positively regulated by NF-κB and suggests a feed-forward mechanism to promote NF-κB signaling by decreasing S-glutathionylation.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aesif</LastName>
<ForeName>Scott W</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuipers</LastName>
<ForeName>Ine</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Velden</LastName>
<ForeName>Jos</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tully</LastName>
<ForeName>Jane E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guala</LastName>
<ForeName>Amy S</ForeName>
<Initials>AS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anathy</LastName>
<ForeName>Vikas</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sheely</LastName>
<ForeName>Juliana I</ForeName>
<Initials>JI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reynaert</LastName>
<ForeName>Niki L</ForeName>
<Initials>NL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wouters</LastName>
<ForeName>Emiel F M</ForeName>
<Initials>EF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van der Vliet</LastName>
<ForeName>Albert</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janssen-Heininger</LastName>
<ForeName>Yvonne M W</ForeName>
<Initials>YM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL060014</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL060014-13</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HL076122</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 ES007122</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018836">Inflammation Mediators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008070">Lipopolysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C498144">Rela protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051996">Transcription Factor RelA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.10</RegistryNumber>
<NameOfSubstance UI="D051550">I-kappa B Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051550" MajorTopicYN="N">I-kappa B Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007114" MajorTopicYN="N">Immunization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018836" MajorTopicYN="N">Inflammation Mediators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008070" MajorTopicYN="N">Lipopolysaccharides</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008822" MajorTopicYN="N">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051996" MajorTopicYN="N">Transcription Factor RelA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015533" MajorTopicYN="N">Transcriptional Activation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
<ArticleId IdType="pii">S0891-5849(11)00416-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2011.06.025</ArticleId>
<ArticleId IdType="pmc">PMC3181077</ArticleId>
<ArticleId IdType="mid">NIHMS314367</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cold Spring Harb Protoc. 2009 Sep;2009(9):pdb.prot5279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 20;284(8):4760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):233-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2007 Aug;37(8):2300-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Oct 19;282(42):30667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):333-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2002 Mar;3(3):221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2002 Apr;160(4):1325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2002 Jun;43(6):1876-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2003 Jan 1;34(1):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12498976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Jun 15;170(12):6257-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12794158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jul 1;22(13):3356-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12839997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2003 Nov;285(5):C1028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12826601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Aug;287(2):C246-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2004 Aug;35(8):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1991 Aug;10(8):2247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2065663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 15;15(10):2508-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8665858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1997 Aug;151(2):389-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9250152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Sep 15;197(1-2):189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9332366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1998 Jun 4;16(22):2945-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Oct;5(10):749-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16175180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jan;26(1):140-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16354686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Mar;1760(3):380-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2007 Feb;36(2):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):3159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Feb 8;132(3):344-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2008 May 1;177(9):959-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Jul 1;45(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 27;283(26):17919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Nov;8(11):837-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jan 26;184(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Apr;44(4):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20539014</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Vermont</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Anathy, Vikas" sort="Anathy, Vikas" uniqKey="Anathy V" first="Vikas" last="Anathy">Vikas Anathy</name>
<name sortKey="Guala, Amy S" sort="Guala, Amy S" uniqKey="Guala A" first="Amy S" last="Guala">Amy S. Guala</name>
<name sortKey="Janssen Heininger, Yvonne M W" sort="Janssen Heininger, Yvonne M W" uniqKey="Janssen Heininger Y" first="Yvonne M W" last="Janssen-Heininger">Yvonne M W. Janssen-Heininger</name>
<name sortKey="Kuipers, Ine" sort="Kuipers, Ine" uniqKey="Kuipers I" first="Ine" last="Kuipers">Ine Kuipers</name>
<name sortKey="Reynaert, Niki L" sort="Reynaert, Niki L" uniqKey="Reynaert N" first="Niki L" last="Reynaert">Niki L. Reynaert</name>
<name sortKey="Sheely, Juliana I" sort="Sheely, Juliana I" uniqKey="Sheely J" first="Juliana I" last="Sheely">Juliana I. Sheely</name>
<name sortKey="Tully, Jane E" sort="Tully, Jane E" uniqKey="Tully J" first="Jane E" last="Tully">Jane E. Tully</name>
<name sortKey="Van Der Velden, Jos" sort="Van Der Velden, Jos" uniqKey="Van Der Velden J" first="Jos" last="Van Der Velden">Jos Van Der Velden</name>
<name sortKey="Van Der Vliet, Albert" sort="Van Der Vliet, Albert" uniqKey="Van Der Vliet A" first="Albert" last="Van Der Vliet">Albert Van Der Vliet</name>
<name sortKey="Wouters, Emiel F M" sort="Wouters, Emiel F M" uniqKey="Wouters E" first="Emiel F M" last="Wouters">Emiel F M. Wouters</name>
</noCountry>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Aesif, Scott W" sort="Aesif, Scott W" uniqKey="Aesif S" first="Scott W" last="Aesif">Scott W. Aesif</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000960 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000960 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21762778
   |texte=   Activation of the glutaredoxin-1 gene by nuclear factor κB enhances signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21762778" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020